手机浏览器扫描二维码访问
于是,他就这样冥思苦想了五分钟,同时在草稿纸上进行了简单的演算。
演算,首先就要先列出这个数列的规律。
林晓列出数列的前面几项。
1,1,2,3,5,8,13,……
看到这一个个数列,他忽然一愣,这个数列似乎有些熟悉啊,很快一想,这不就是斐波那契数列吗?
难怪,他看这个通项公式的时候就觉得有点眼熟。
斐波那契数列,是以十二世纪的意呆利数学家莱昂纳多·斐波那契命名的,其在数学中是以递归的方式来定义的:规定第零项和第一项分别为0,1后,其余每项都等于前两项之和,而其中第零项属于特殊项,不算在数列中。
大家可能觉得这个数列看起来平平无奇,不就是这么简单的规律嘛,我也可以创建一个数列嘛。
比如叫张三法外狂徒数列,规定前三项为1,剩余每项都等于前三项之和,或者是规定前四项怎么怎么样。
然而,斐波那契数列之所以特殊,是因为它并没有这么简单,斐波那契数列又被称为黄金分割数列,它的前一项除以后一项的值,会越来越趋近于黄金分割比例,即0618。
另外,这个数列在自然界中也有很多巧合,比如向日葵的种子螺旋排列有99%都遵守斐波那契数列,以及树枝生长规律也符合这个数列。
所以,研究斐波那契数列的数学家们,也有很多。
不过,这个斐波那契素数问题……
林晓就纠结了。
这真的不是数学未解的难题吗?
可这是老师给自己的出的题啊……
总不可能徐老师故意坑他吧?
或者说,他拿错题了?
要不拿手机搜一下?
但想了想,万一这道题已经被解开了,那他不就算是提前知道答案了?
对于他来说,哪怕看到一个思路,对于解题都有很大的帮助。
林晓并不知道这确实是一道未解的难题,因为他又不研究斐波那契数列,能知道这个数列的通项公式都算好的了,哪会了解这些旁枝末节呢?
而且这个问题也并不算出名,华国的中学生普遍知道的数学未解难题,基本上也就局限于哥德巴赫猜想而已,因为华国有一位陈姓数学家解决了哥德巴赫猜想中的“1+2”问题,所以就出于一种宣传的目的,将这个问题写在了数学课本上,告诉给了华国的中小学生们。
至于那些数学界更加出名的问题,譬如黎曼猜想、bsd猜想、霍奇猜想等等,就没多少中小学生知道了。
于是林晓纠结起来,不知道该怎么处理这道题。
但忽然,他脑海中灵光乍现。
这道题是写在第三张纸上的嘛!
而第一张纸的题显然比第二张纸的题简单,这么来看,这第三张纸的题肯定也比第二张纸的难。
而第二张纸上的题已经足够难了,这第三张纸上只有这么一道题,更加困难,显然就理所应当嘛。
这个逻辑很容易想通嘛!
林晓顿时就不再纠结了,同时也对徐红兵老师肃然起敬。
这种对前后各种题目难度的把控力度真是厉害!
不愧是数学教授。
于是他不再想太多,继续思考起思路。
李钦醒来,看着睡在一旁的太子妃。还有面前部下汇报的情况。他知道了一件事情,自己穿越了,穿越到了一个平行世界的大吴王朝中了。而且自己还造反了。当朝太子死在了他的辖区,面对如此局面,原主果断的选择了造反。现在他正在造反的路上。自己的兵马远远不如朝廷,这可怎么办吧?什么?你说大吴的皇帝叫什么?朱祁真?还有一个太监叫王阵?他们还准备御驾亲征?好了。这把稳了。...
人到中年万事休却道天凉好个秋。三十不豪四十不富五十将相寻死路。...
一觉醒来,苏御已经置身大魏王朝,并拥有长生不老的能力。他要做的就是在武道一途有所建树,然后拥有自保之力。为此苏御加入镇武司,开始了摸鱼的当差日子。行到水穷处,坐看云起时这是一个长生不老的凡人,一步步成长为武道神话的故事。...
简介关于农家孤女天灾深山种田日常夏清月意外穿越深山老林,隐居天坑,不曾想战乱天灾接踵而来,为了求生,她开始了种植养殖,疯狂囤物资,打造自己的世外桃源...
简介关于诡异复苏我开局进化黑山羊魅魔诡异复苏三年的时间,林昊苟了三年,终于有机会将黑山羊向着更高的层次进化了打造极限魅魔,不断进化,成就诡秘之主才是林昊的终极目标...
某男穿越了,变成了大美女到底是安安稳稳的当一个美女,到时候找个高富帅嫁了,还是搞搞百合呢穿越附带的金手指过目不忘,让她如鱼得水,圆了自己的作家梦...